Вентзазор в вентилируемом фасаде
Haikara.ru

Строительный портал

Вентзазор в вентилируемом фасаде

О воздушном зазоре навесного вентилируемого фасада

Воздушный зазор навесного вентилируемого фасада является одним из его основных конструкционных параметров. Ниже представлен обзор основных факторов, которые нужно учитывать при назначении номинального воздушного зазора навесного вентилируемого фасада для конкретных условий его эксплуатации.

1. Функции воздушного зазора

Воздушный зазор (воздушная прослойка) навесного вентилируемого фасада (рисунок 1) выполняет несколько важных функций, в том числе:

  • Компенсирует отклонения размеров стен от номинальных размеров
  • Разрывает капиллярный путь проникновения дождевой воды снаружи здания вглубь стены.
  • Образует дренажную плоскость для удаления воды наружу.
  • Образует вентиляционный канал для поддержания элементов фасада в сухом состоянии, а также для удаления избыточной влаги изнутри здания.
  • При порывах ветра снижает разность давлений между наружным воздухом и воздухом внутри фасада. Эта разность давлений является основной движущей силой для проникновения дождевой воды через наружную облицовку.

Рисунок 1 — Система навесного вентилируемого фасада [1]

2. Ширина воздушного зазора в нормативных документах

Отечественные и зарубежные нормативные документы дают следующие рекомендации по ширине воздушного зазора в навесных вентилируемых фасадах.

2.1. DIN 18615-1 и ETAG 034 [2, 3]

Стандарт DIN 18615-1 задает требования для навесных вентилируемых фасадов еще с 1970-х годов. Более поздний документ ETAG 034 является основным нормативным документом по европейской сертификации навесных вентилируемых фасадов. Эти документы дают следующие критерии для того, когда фасад считается вентилируемым:

  • Расстояние между облицовкой и теплоизоляцией — вентиляционный воздушный зазор — составляет не менее 20 мм. Этот воздушный зазор может местами сужаться до 5-10 мм к подконструкции или к облицовке, при условии, что это не препятствует работе дренажа и/или вентиляции.
  • Имеются вентиляционные отверстия, как минимум внизу и вверху фасада, с поперечным сечением не менее 50 см 2 на погонный метр.

Заметим, что 50 см 2 на длине 1 м — это, например, щель 5 мм х 1000 мм.

В стандарте, кроме того, указано, что он рассматривает навесные вентилируемые фасады с шириной воздушного зазора не более 150 мм.

2.2. ТР 161-05 [4]

«Воздушный зазор между слоем теплоизоляции и облицовкой, а также зазоры между отдельными элементами облицовки обеспечивают процессы влагообмена в наружных ограждающих конструкциях здания.

Проектная величина зазора между теплоизоляционным слоем и облицовкой не должна быть менее 40 мм».

2.3. Проект Р НОСТРОЙ [5]

«Максимальные теплозащитные свойства конструкции фасада достигаются . при минимально возможной (по условиям удаления влаги или по другим соображениям) величине воздушного зазора».

«Вылет кронштейна от стены следует подбирать так, чтобы между утеплителем и направляющей было не менее 20 мм воздушного зазора. Максимальная величина воздушного зазора 200 мм.

Примечание: при величине воздушного зазора более 200 мм необходимо устанавливать рассечки из оцинкованной стали, с перфорацией, для предотвращения эффекта трубы (большая скорость воздуха)».

2.4. СП РК 5.06-19-2012 [6]

«Величина воздушного зазора определяется расчетом, исходя из максимально
допустимой скорости движения воздуха в нем и должна быть не менее:

  • при наличии горизонтальных и вертикальных открытых швов между панелями экрана шириной 2-10 мм:
    — 50 мм при использовании облицовочных плит площадью 0,4 м 2 и более;
    — 30 мм при использовании облицовочных плит площадью менее 0,4 м 2 .
  • при наличии только горизонтальных открытых швов между панелями экрана
    шириной 2-10 мм:
    — 40 мм при использовании облицовочных плит площадью 0,4 м 2 и более;
    — 20 мм при использовании облицовочных плит площадью менее 0,4 м 2 .

В местах совмещения НФсВЗ с цоколем здания внизу и с парапетом или кров­лей здания вверху должны быть предус­мотрены отверстия для притока и оттока
воздуха, площадь сечения которых должна быть не менее 50 см 2 на каждый метр длины горизонтальной кромки фасада».

3. Минимальный воздушный зазор

При облицовке малоэтажных зданий, например, в США и Канаде, считается, что даже зазор в 1,5-2,0 мм уже обеспечивает разрыв капиллярного движения влаги и, значит, дает возможность дренажа жидкой воды и диффузионного перераспределения влаги. С учетом реальности строительства и допустимых отклонений в толщинах материалов, обычно зазор бывает не менее 6 мм. Такие зазоры применяют, например, при облицовке зданий деревянными или пластиковыми панелями [8].

4. Воздушный зазор и выравнивание давления

4.1. Дренаж и вентиляция

Наружная облицовка обычного навесного вентилируемого фасада предназначена защищать стену здания от массового проникновения воды при прямом воздействии косого дождя. Тем не менее, часть дождевой воды неизбежно проникать через облицовку в воздушный зазор. При правильной конструкции фасада эта вода быстро удаляется наружу за счет механизмов, которые работают в воздушном зазоре:

  • дренажа воды вниз к дренажным отверстиям и
  • высушивания влаги внутри зазора за счет вентилирования постоянным потоком воздуха.

4.2. Перепад давления воздуха

Когда ветер дует на навесной фасад, он создает на наружной стороне облицовки более высокое давление, чем на внутренней стороне облицовки. Воздух пытается выровнять это различие путем перетекания из зоны высокого давления в зону низкого давления. Это означает, что воздух будет проходить через любые отверстия и щели, чтобы выровнять разность давлений. Если при этом идет дождь, то этот воздух будет нести с собой в больших количествах внутрь фасада дождевую воду (рисунок 2).

Рисунок 2 — Принцип движения воды под воздействием перепада давления [8]

4.3. Воздушный зазор и выравнивание давления

Для защиты от чрезмерного проникновения влаги под воздействием перепада давления применяют специальные конструкции навесных вентилируемых фасадов. Конструкция этих фасадов включает применение изолированных секций с надежной воздухопроницаемостью и дополнительными отверстиями для дренажа и вентиляции. Для эффективного выравнивания давления эти секции должны иметь достаточно жесткие стенки и ограниченный объем воздуха [10,13].

Эти секции могут иметь различные размеры в зависимости от формы и высоты здания, например, на углах и около крыши — меньше, в середине здания — больше [10].

В обычных навесных вентилируемых фасадах принцип выравнивания давления также работает в той или иной степени. При малом воздушном зазоре объем воздушной полости ограничен, и выравнивание давления может быть заметным. При большом воздушном зазоре объем воздуха в полости слишком велик, чтобы могло происходить какое-либо выравнивание давления.

Рисунок 3 — Различия в конструкциях фасадов [9]:

а — с дренажом и вентиляцией;

б — с дренажом, вентиляцией и выравниванием давления

5. Воздушный зазор и пожарная безопасность

Подъем воздуха в вентилируемом зазоре происходит за счет явления, которое называют эффектом тяги. Аналогичный эффект действует в обыкновенной печной трубе. В случае пожара вентилируемый воздушный зазор создает открытый путь для продвижения скрытого огня сзади облицовки (рисунок 4). Чем шире воздушный зазор, тем большую угрозу, по-видимому, он представляет с точки зрения пожарной безопасности.

Для предотвращения распространения огня через воздушный зазор в нем устанавливают специальные противопожарные барьеры. Чем шире воздушный зазор, тем сложнее и дороже обходится установка в фасаде противопожарных барьеров.

Рисунок 4— Распространение пламени по воздушному зазору вентилируемого навесного фасада [10]

6. Воздушный зазор и теплоизоляция

Иногда воздушный зазор считают дополнительным теплоизоляционным слоем, который дает вклад в сопротивление стены теплопередаче (рисунок 5) [11].

Рисунок 5 — Схема для расчета сопротивления теплопередаче навесного вентилируемого фасада [11]:

a — толщина облицовки,

b — ширина воздушного зазора,

c — толщина теплоизоляции,

m — толщина несущей стены,

n — толщина внутренней отделки

Однако согласно стандарту EN ISO 6946 [12] сопротивление теплопередаче воздушной прослойки (воздушного зазора) внутри стены зависит от того, насколько она является вентилируемой.

Вертикальная воздушная прослойка считается хорошо вентилируемой, если, площадь отверстий составляет более 1500 мм 2 на метр ее длины в горизонтальном направлении. Воздушный зазор вентилируемого фасада относится к хорошо вентилируемым воздушным прослойкам, так площадь его вентиляционных отверстий составляет не менее 50 см 2 = 5000 мм 2 [2-4, 6].

Поэтому согласно EN ISO 6946 расчет сопротивления теплопередаче вентилируемого фасада должен проводиться без учета сопротивления воздушной прослойки и наружной облицовки (b и a на рисунке 5). Температура воздуха в зазоре считается равной температуре наружного воздуха, а сопротивление поверхности стенки зазора принимается равным 0,13 м 2 ·К/Вт как для внутренней поверхности, а не 0,04 м 2 ·К/Вт, как это применяется для наружных поверхностей [12].

Таким образом, вклад вентилируемого воздушного зазора в сопротивление стены теплопередаче составляет всего 0,13 м 2 ·К/Вт и не зависит от его толщины.

7. Климатические условия и воздушный зазор

Выбор системы наружной облицовки здания и, в том числе, наличие и ширина воздушного зазора, зависят как от климатической зоны, в которой находится здание, так и от местных геодезических условий. Каждая климатическая зона имеет свой потенциал намокания и высушивания наружной оболочки здания. Например, во влажном морском климате потенциал намокания материалов стен может быть очень высокий, а потенциал их естественного высушивания очень низким. Это означает, что, если наружная оболочка здания подверглась чрезмерному намоканию из-за миграции влаги снаружи или изнутри здания, то в период высушивания она не успеет вовремя высохнуть и будет подвергаться разрушительному воздействию влаги.

Конструкция навесного фасада в целом и воздушного зазора, в частности, должна учитывать климатические особенности местности. Так, во влажном, жарком или очень жарком климате водяной пар двигается (в различном количестве) в основном снаружи внутрь здания, тогда как в умеренном, холодном, очень холодном и арктическом климате водяной пар двигается изнутри здания наружу.

Главным показателем потенциала намокания для данного географического региона считается годовое количество осадков, которое в ней выпадает. В холодном климате, по-видимому, нужно делать поправку на то, что часть осадков выпадает в виде снега, от которого стены намокают в меньшей степени, чем от косого дождя.

В Северной Америке уровень годового количества осадков является основным фактором при выборе типа стены по отношению к системе дренажа и вентилирования [13]. В зависимости от годового количества осадков к стенам зданий предъявляются следующие требования по наличию и эффективности дренажа и вентилирования:

до 500 мм — дренаж и вентилирование не требуются;

от 500 до 1000 мм — дренаж без вентилирования;

от 1000 до 1500 мм — дренаж с вентилированием;

свыше 1500 мм — дренаж с вентилированием и выравниванием давления.

Эффективность дренажа и вентилирования навесных облицовочных фасадов определяется конструкцией воздушного зазора, в первую очередь, его шириной и объемом.

Читать еще:  Самый дешевый способ отделки фасада дома

8. Номинальная ширина воздушного зазора — компромисс факторов

Таким образом, при выборе оптимальной ширины воздушного зазора необходимо учитывать следующее:

номинальный зазор не должен быть менее 6 мм, чтобы обеспечивать эффективный разрыв капиллярного движения влаги внутрь здания и дренаж жидкой воды;

номинальный зазор не должен быть менее 20 мм, чтобы обеспечивать возможность отклонений стены от вертикали в пределах нормальных строительных допусков;

увеличение ширины зазора не дает повышения сопротивления стены теплопередаче;

чрезмерное увеличение зазора повышает риск распространения пламени при пожаре;

чем больше ширина зазора, тем больше вылет кронштейнов, больше их толщина, количество, масса и стоимость;

чем шире воздушный зазор, тем меньше эффективность выравнивания давления снаружи и внутри облицовки, и, следовательно, большее количество воды, которая проникает за облицовку.

Источники:

1. Немецкая ассоциация производителей навесных вентилируемых фасадов — http://www.fvhf.de/Fassade/VHF-System/Aufbau-und-Technik.php

2. DIN 18615-1:2010 Cladding for external walls, ventilated at rear — Part 1: Requirements, principles of testing

3. ETAG 034 Guideline for European technical approval of kits for external wall cladding, 2014

4. ТР 161-05 Технические рекомендации по проектированию, монтажу и эксплуатации навесных фасадных систем, 2005
5. Проект НОСТРОЙ (2014) Навесные фасадные системы с воздушным зазором. Рекомендации по критериям выбора, проектированию, устройству, ремонту и эксплуатации

6. СП РК 5.06-19-2012 Проектирование и монтаж навесных фасадов с воздушным зазором, Республика Казахстан

12. EN ISO 6946-2008 Building components and building elements — Thermal resistance — Calculation method

ООО «Алюком»
г. Москва, ул. Нагатинская, д. 16, стр. 9, офис 2-5

Тел.: +7 (495) 268 0444
E-mail: info@alucom.ru

Производство и склад: Калужская обл., г. Малоярославец, ул. Калужская, 64.

Зазор в вентилируемых фасадах: расчеты, пояснения и оспаривание мифа о том, что чем больше зазор, тем лучше.

Правильно определённая толщина воздушного зазора и вычисление реальных величин сопротивления теплоотдачи в конструкции гарантируют стабильную нормализацию температурного режима внутри помещения. Также они снижают нагрузку на фасад здания, полученную под воздействием ультрафиолетовых лучей. Именно потому теплофизические свойства очень подробно изучаются и исследуются.

Основные характеристики

Под понятием вентилируемый фасад принято считать конструкции, состоящие из обрешётки, слоя теплоизоляции и облицовочных панелей. В большинстве случаев технология используется при начальном строительстве, а также полной или частичной реконструкции зданий.

Полный расчёт выполняется профессиональными проектировщиками. При этом учитывается расположение объекта недвижимости, а также его характеристики. Например, здание, построенное на открытом участке, будет иметь совершенно другие характеристики по сравнению с тем, которое расположено в черте города.
Главным отличием фасада с вентилируемым воздушным зазором от других систем является присутствие в системе слоя теплоизоляции, металлической подсистемы и облицовочного слоя, который определяет заключительный вид здания. Такие конструкции успешно применяются для теплоизоляции и декоративной отделки многоэтажных зданий, достигающих высоты более 150 метров.

Принцип работы

Движение воздушных масс в пространстве вентилируемых систем осуществляется через входные проушины, расположенные в цокольной части здания. Выход происходит через специальные отверстия в парапете и через русты между облицовочными плитами. Причём минимальный размер диаметра вентиляционных проёмов как для отработанного так и для свежего воздуха должен составлять не более 20 мм.

  • При отделке керамогранитом воздушный обмен происходит только через горизонтальные русты;
  • использование композитных материалов позволяет осуществлять вентиляцию через вертикальные.

Движение воздуха в вентилируемых системах должно происходить только с преодолением некоторого сопротивления в виде внутренних отбортовок кассет или плит.

Приоритетные цели

При выполнении расчёта, правильно вычисленная толщина зазора вентилируемой воздушной прослойки позволяет повысить теплозащиту ограждающих конструкций здания с соблюдением хорошего влажностно-температурного режима.
При соблюдении всех рекомендаций при расчётах нормативы должны соответствовать требованиям СНиП 11-3-79 с внесёнными изменениями №3.
Именно поэтому, подробные характеристики тепловой защиты фасадов должны быть рассчитаны и проконтролированы с соответствующим вниманием. К сожалению, не все добросовестно выполняют эти действия, используя в качестве конкретных показаний средние результаты, не соответствующие конкретной ситуации.

Последствия ошибок в расчёте

При неправильном расчёте зазора монтаж вентилируемого фасада будет выполнен с нарушением технологии. Это может привести к разрушению теплоизолирующего слоя (в случае близкого расположения слоя теплоизоляции и облицовочного материала). Впоследствии, это может привести к намоканию и постепенному разрушению основной поверхности стены здания.

Слишком большой воздушный зазор повлечёт за собой звуковые колебания (гул) при сильном ветре, дующем в определённом направлении. Это может произойти при использовании слишком длинных кронштейнов или применения ваты с низкой жёсткостью.

Ещё одной ошибкой может быть использование в качестве утеплителя пенополистирола. Связано это с требованиями по пожарной безопасности строения. Дело в том, что пенопласт очень хорошо горит, несмотря на то, что производитель называет его слабо горючим материалом. При горении выделяется не только вредный дым черного цвета, но и стирол, вызывающий у человека поражения дыхательных органов.
В случае с вентилируемыми конструкциями дело усугубляется тем, что процесс горения быстро распространяется благодаря постоянному притоку и оттоку свежего воздуха под облицовкой поверхности.

Поэтому рекомендуется использовать только негорючие виды утеплителя. Такие как минеральная вата и другие ее разновидности.

Расчёты

На данный момент разработана новая схема определения толщины зазора для монтирования качественного вентилируемого фасада. Для её вычисления используется основная характеристика теплозащиты ограждающей системы – это сопротивление теплопередачи, R1. Во время этапа проектирования величина является расчётной и вычисляется уравнением №10 из вышеупомянутого СНиП 11-3-79:

  • R1 = (T1 — T2) / q
    Вентилируемый фасад с отделкой на относе имеет более сложный принцип передачи тепла, чем предусмотренный этой формулой. В данном случае есть уже два участка с отличающимися характеристиками теплопередачи, поэтому вычислять их необходимо по отдельности. Отталкиваясь от этого условия приходится установить двухкомпонентность переноса тепла из зазора через стандартное уравнение:
    R1 = (T1 — T2) / q = R(СНиП) + R(зазора) = R2 * r + R(зазора)
    Слагаемое номер один правой части формулы характеризует тепловую передачу сквозь фасад с теплоизоляцией. Второе – сквозь воздушный заслон и облицовочную поверхность. Если облицовка отсутствует, второе слагаемое удаляется и образуется обычная формула, присущая таким системам:
    R1 = R(СНиП) = R1(усп) * r = ((1 / а) + Z + (1 / а) * r
    В трёх формулах, приведённых выше использованы следующие обозначения
  • T1, T2 – температура воздуха на входе в систему и соответственно на выходе из неё, С
  • q – плотность проникания тепла через систему, Вт/кв.м;
  • R(СНиП) – конкретное сопротивление тепловой передаче системы с теплоизоляцией, которое определяется в соответствии с действующим СНиП 11-3-79, м2 * С/Вт;
  • r – коэффициенты теплотехнического состояния однородности системы;
  • R (зазора) – эффектное термическое сопротивление воздушного пространства, м2 * С/Вт.

Вычисление зазора

Необходимая толщина воздушной заслонки рассчитывается путём использования значений температуры и скорости движения воздуха в вентилируемом фасаде. Между поверхностью облицовки и утеплителя происходит лучевой теплообмен, который напрямую зависит от температуры.
Конвективный теплообмен выполняется между основными элементами системы и воздушными массами. Величина характеризуется в прямой зависимости от скорости движения воздушного потока, его температуры и элементов системы.
В свою очередь, скорость воздушных потоков колеблется в зависимости от температуры окружающей среды. А её вычисление происходит путём определения скорости воздушных масс и коэффициента теплового обмена, происходящего в вентилируемом пространстве.
Перечисленные выше взаимосвязи не позволяют выполнить вычисление и разработать непосредственные формулы. Именно поэтому расчёт температуры воздушных масс в вентилируемом фасаде осуществляется только численно-итерационными способами. Воспользовавшись таким методом можно получить все интересующие значения:

  • Температура воздуха в зазоре;
  • Скорость его передвижения внутри системы;
  • Толщина зазора;
  • Коэффициент теплового обмена конструкции.

Результат

Исходя из всего вышеперечисленного можно сделать вывод: теплоизоляционные свойства вентилируемого фасада зависят не только от качества и количества теплоизоляционного материала. Большое влияние на это значение оказывает и правильно рассчитанный и смонтированный зазор, а также ещё один фактор: теплопроводность и количество утеплителя, облицовочного материала, а также кронштейнов.

Необходимо помнить, что для достижения оптимальных теплоизоляционных характеристик фасадов такого плана является наименьшее количество используемых кронштейнов. При этом величина свободного пространства должна быть как можно меньше (исходя из требований удаления влаги от утеплителя или другим соображениям).

Возможные сложности

Во время составления проекта работ и вычисления величины вентиляционных зазоров могут возникнуть несоответствия, связанные с конструктивными особенностями здания. Например, при выполнении расчётов для отделки строений старых построек, которым уже не один десяток лет, из-за усадки плоскости стен могут возникнуть отклонения от вертикальной и горизонтальной поверхности. Для компенсации этих отклонений применяют специальные удлинители, которые надевают на кронштейн и тем самым регулируют вылет от стены.
Соответственно при проектировании необходимо учитывать этот коэффициент и выравнивать поверхность за счёт регулировки вентиляционным зазором. Поэтому создание оптимального расстояния, от паропроницаемой мембраны до поверхности облицовочного материала, применимо не для всех типов строений.

Популярное заблуждение

Распространённое мнение о том, что чем больше расстояние от утеплителя до облицовки, тем лучше – ошибочно. Многие думают, что таким образом на плиты теплоизоляции гарантированно не попадёт влага. Это так, но следует напомнить, конструкция с предельно завышенной величиной пространства воздушной прослойки может начать шуметь при сильных порывах ветра.

Таким образом, вычисления показывают то, что правильной величины относительно расстояния между паропроницаемой защитной мембраной, а также облицовочным слоем достаточно сложная задача. Проектирование таких фасадов требуется выполнять с учётом всех значений и производить все необходимые для этого расчёты теплоизоляционных характеристик конструкции. Только это позволит дать объективную оценку схеме планируемой конструкции, к тому же оно поспособствует усовершенствованию аналогичных систем и позволит удовлетворить все требования касающиеся теплоизоляции здания.

Зазор в вентилируемых фасадах: расчеты, пояснения и оспаривание мифа о том, что чем больше зазор, тем лучше.

Правильно определённая толщина воздушного зазора и вычисление реальных величин сопротивления теплоотдачи в конструкции гарантируют стабильную нормализацию температурного режима внутри помещения. Также они снижают нагрузку на фасад здания, полученную под воздействием ультрафиолетовых лучей. Именно потому теплофизические свойства очень подробно изучаются и исследуются.

Основные характеристики

Под понятием вентилируемый фасад принято считать конструкции, состоящие из обрешётки, слоя теплоизоляции и облицовочных панелей. В большинстве случаев технология используется при начальном строительстве, а также полной или частичной реконструкции зданий.

Полный расчёт выполняется профессиональными проектировщиками. При этом учитывается расположение объекта недвижимости, а также его характеристики. Например, здание, построенное на открытом участке, будет иметь совершенно другие характеристики по сравнению с тем, которое расположено в черте города.
Главным отличием фасада с вентилируемым воздушным зазором от других систем является присутствие в системе слоя теплоизоляции, металлической подсистемы и облицовочного слоя, который определяет заключительный вид здания. Такие конструкции успешно применяются для теплоизоляции и декоративной отделки многоэтажных зданий, достигающих высоты более 150 метров.

Читать еще:  Почему фасады лучше красить акриловой краской

Принцип работы

Движение воздушных масс в пространстве вентилируемых систем осуществляется через входные проушины, расположенные в цокольной части здания. Выход происходит через специальные отверстия в парапете и через русты между облицовочными плитами. Причём минимальный размер диаметра вентиляционных проёмов как для отработанного так и для свежего воздуха должен составлять не более 20 мм.

  • При отделке керамогранитом воздушный обмен происходит только через горизонтальные русты;
  • использование композитных материалов позволяет осуществлять вентиляцию через вертикальные.

Движение воздуха в вентилируемых системах должно происходить только с преодолением некоторого сопротивления в виде внутренних отбортовок кассет или плит.

Приоритетные цели

При выполнении расчёта, правильно вычисленная толщина зазора вентилируемой воздушной прослойки позволяет повысить теплозащиту ограждающих конструкций здания с соблюдением хорошего влажностно-температурного режима.
При соблюдении всех рекомендаций при расчётах нормативы должны соответствовать требованиям СНиП 11-3-79 с внесёнными изменениями №3.
Именно поэтому, подробные характеристики тепловой защиты фасадов должны быть рассчитаны и проконтролированы с соответствующим вниманием. К сожалению, не все добросовестно выполняют эти действия, используя в качестве конкретных показаний средние результаты, не соответствующие конкретной ситуации.

Последствия ошибок в расчёте

При неправильном расчёте зазора монтаж вентилируемого фасада будет выполнен с нарушением технологии. Это может привести к разрушению теплоизолирующего слоя (в случае близкого расположения слоя теплоизоляции и облицовочного материала). Впоследствии, это может привести к намоканию и постепенному разрушению основной поверхности стены здания.

Слишком большой воздушный зазор повлечёт за собой звуковые колебания (гул) при сильном ветре, дующем в определённом направлении. Это может произойти при использовании слишком длинных кронштейнов или применения ваты с низкой жёсткостью.

Ещё одной ошибкой может быть использование в качестве утеплителя пенополистирола. Связано это с требованиями по пожарной безопасности строения. Дело в том, что пенопласт очень хорошо горит, несмотря на то, что производитель называет его слабо горючим материалом. При горении выделяется не только вредный дым черного цвета, но и стирол, вызывающий у человека поражения дыхательных органов.
В случае с вентилируемыми конструкциями дело усугубляется тем, что процесс горения быстро распространяется благодаря постоянному притоку и оттоку свежего воздуха под облицовкой поверхности.

Поэтому рекомендуется использовать только негорючие виды утеплителя. Такие как минеральная вата и другие ее разновидности.

Расчёты

На данный момент разработана новая схема определения толщины зазора для монтирования качественного вентилируемого фасада. Для её вычисления используется основная характеристика теплозащиты ограждающей системы – это сопротивление теплопередачи, R1. Во время этапа проектирования величина является расчётной и вычисляется уравнением №10 из вышеупомянутого СНиП 11-3-79:

  • R1 = (T1 — T2) / q
    Вентилируемый фасад с отделкой на относе имеет более сложный принцип передачи тепла, чем предусмотренный этой формулой. В данном случае есть уже два участка с отличающимися характеристиками теплопередачи, поэтому вычислять их необходимо по отдельности. Отталкиваясь от этого условия приходится установить двухкомпонентность переноса тепла из зазора через стандартное уравнение:
    R1 = (T1 — T2) / q = R(СНиП) + R(зазора) = R2 * r + R(зазора)
    Слагаемое номер один правой части формулы характеризует тепловую передачу сквозь фасад с теплоизоляцией. Второе – сквозь воздушный заслон и облицовочную поверхность. Если облицовка отсутствует, второе слагаемое удаляется и образуется обычная формула, присущая таким системам:
    R1 = R(СНиП) = R1(усп) * r = ((1 / а) + Z + (1 / а) * r
    В трёх формулах, приведённых выше использованы следующие обозначения
  • T1, T2 – температура воздуха на входе в систему и соответственно на выходе из неё, С
  • q – плотность проникания тепла через систему, Вт/кв.м;
  • R(СНиП) – конкретное сопротивление тепловой передаче системы с теплоизоляцией, которое определяется в соответствии с действующим СНиП 11-3-79, м2 * С/Вт;
  • r – коэффициенты теплотехнического состояния однородности системы;
  • R (зазора) – эффектное термическое сопротивление воздушного пространства, м2 * С/Вт.

Вычисление зазора

Необходимая толщина воздушной заслонки рассчитывается путём использования значений температуры и скорости движения воздуха в вентилируемом фасаде. Между поверхностью облицовки и утеплителя происходит лучевой теплообмен, который напрямую зависит от температуры.
Конвективный теплообмен выполняется между основными элементами системы и воздушными массами. Величина характеризуется в прямой зависимости от скорости движения воздушного потока, его температуры и элементов системы.
В свою очередь, скорость воздушных потоков колеблется в зависимости от температуры окружающей среды. А её вычисление происходит путём определения скорости воздушных масс и коэффициента теплового обмена, происходящего в вентилируемом пространстве.
Перечисленные выше взаимосвязи не позволяют выполнить вычисление и разработать непосредственные формулы. Именно поэтому расчёт температуры воздушных масс в вентилируемом фасаде осуществляется только численно-итерационными способами. Воспользовавшись таким методом можно получить все интересующие значения:

  • Температура воздуха в зазоре;
  • Скорость его передвижения внутри системы;
  • Толщина зазора;
  • Коэффициент теплового обмена конструкции.

Результат

Исходя из всего вышеперечисленного можно сделать вывод: теплоизоляционные свойства вентилируемого фасада зависят не только от качества и количества теплоизоляционного материала. Большое влияние на это значение оказывает и правильно рассчитанный и смонтированный зазор, а также ещё один фактор: теплопроводность и количество утеплителя, облицовочного материала, а также кронштейнов.

Необходимо помнить, что для достижения оптимальных теплоизоляционных характеристик фасадов такого плана является наименьшее количество используемых кронштейнов. При этом величина свободного пространства должна быть как можно меньше (исходя из требований удаления влаги от утеплителя или другим соображениям).

Возможные сложности

Во время составления проекта работ и вычисления величины вентиляционных зазоров могут возникнуть несоответствия, связанные с конструктивными особенностями здания. Например, при выполнении расчётов для отделки строений старых построек, которым уже не один десяток лет, из-за усадки плоскости стен могут возникнуть отклонения от вертикальной и горизонтальной поверхности. Для компенсации этих отклонений применяют специальные удлинители, которые надевают на кронштейн и тем самым регулируют вылет от стены.
Соответственно при проектировании необходимо учитывать этот коэффициент и выравнивать поверхность за счёт регулировки вентиляционным зазором. Поэтому создание оптимального расстояния, от паропроницаемой мембраны до поверхности облицовочного материала, применимо не для всех типов строений.

Популярное заблуждение

Распространённое мнение о том, что чем больше расстояние от утеплителя до облицовки, тем лучше – ошибочно. Многие думают, что таким образом на плиты теплоизоляции гарантированно не попадёт влага. Это так, но следует напомнить, конструкция с предельно завышенной величиной пространства воздушной прослойки может начать шуметь при сильных порывах ветра.

Таким образом, вычисления показывают то, что правильной величины относительно расстояния между паропроницаемой защитной мембраной, а также облицовочным слоем достаточно сложная задача. Проектирование таких фасадов требуется выполнять с учётом всех значений и производить все необходимые для этого расчёты теплоизоляционных характеристик конструкции. Только это позволит дать объективную оценку схеме планируемой конструкции, к тому же оно поспособствует усовершенствованию аналогичных систем и позволит удовлетворить все требования касающиеся теплоизоляции здания.

Всегда ли нужен вентзазор?


Вопрос про обшивку дома задает Аркадий Карпов, г. Москва: Здравствуйте, хочу задать вам вопрос. Мне сейчас бригада делает обшивку дома, утепляют и обшивают сайдингом. После того, как настелили пленку, сразу шьют поверх этого сайдинг. Я говорю – где зазор? Они говорят — не надо, всегда так делаем. Правильно ли они делают и как надо правильно?

Отвечает Андрей Волоколамцев, бригадир ООО «Август», г. Подольск.

Здравствуйте, Аркадий. Возможно то, что делают ваши строители не совсем правильно, а возможно – совсем не правильно. Чтобы было у вас нормальное и системное понимание этого вопроса, давайте, для начала, разберем ваш случай, а потом посмотрим, нужно ли делать вентзазор и когда.

Итак, давайте разберемся, из какого материала у вас дом. Если стены сложены из паропроницаемого материала, то в случае использования декоративного слоя из сайдинга, вам обязательно нужно делать вентилируемый зазор. Потому что влага из внутренних помещений вашего дома в виде пара будет проникать через стены в утеплитель и увлажнять его.

Утеплители типа базальтовой ваты очень не любят влаги. Когда они намокают хотя бы на 15 процентов, то теряют в своих показателях по теплосопротивлению уже 50 процентов.

Есть, однако, такие утеплители, которые не так восприимчивы к влаге, которые не на столько теряют свою теплоизолирующую способность. Это, в первую очередь, относится к пенополиуретану, который может наноситься на стены дома напылением.

Когда точно нужен вентзазор?

Итак, в вашем случае, вентилируемый зазор между утеплителем и наружным декоративным слоем будет точно нужен в следующих вариантах:

  • Использование любого утеплителя, теряющего свои свойства при намокании.
  • Материал стен дома пропускает пар из внутренних помещений во внешний слой.
  • Декоративная отделка представляет собой слой пароизолирующего или влагоконденсирующего материала.

Последний пункт в полной мере можно отнести к виниловому сайдингу, металосайдингу и профилированному листу. Эти материалы не дадут выходить влаге из утеплителя, если будут плотно нашиты на слой утеплителя.

Когда вентзазор не нужен?

В каких случаях вентзазор можно не делать:

  • Материал стен дома не пропускает пар из внутренних помещений наружу, например, бетон.
  • Утеплитель со стороны внутренних помещений хорошо изолирован пароизоляцией.
  • Внешний материал хорошо пропускает пар, например, фасадная штукатурка.

На этой способности фасадной штукатурки строится система мокрого фасада, когда стены можно утеплять пенопластом или базальтовой ватой.

Любой пар, попадающий в утеплитель, выводится прямо через штукатурный слой и паропроницаемую краску. Вентзазора в этом случае между утеплителем и декоративным слоем нет.

Когда еще обязательно нужен вентзазор?

В каких еще случаях понадобится вентиляционный зазор между стеной и декоративным покрытием:

  1. Материал декоративного слоя способствует образованию конденсата.
  2. Материал стен под декоративным слоем может портиться от влаги (гниль, трещины и т.п.).

Приведу простой пример. Если вы задумали обшить деревянный дом металлическим профилированным листом, то без вентзазора здесь не обойтись.

В противном случае вся влага, которая будет конденсироваться на внутренней поверхности профлиста, будет впитываться деревянными стенами, которые будут от этого разрушаться.

В случае с вентзазором, влага, конечно же, конденсируется на внутренней поверхности профилированного листа – это металл. Но прямого контакта с поверхностью деревянных стен не имеет. И ток воздуха, который присутствует в вентзазоре, уносит эту влагу в виде пара и выводит из пространства между декоративным слоем и стеной.

Читать еще:  Штукатурка по минвате фасадная

Рассмотрите, какой из приведенных выше случаев является вашим, и выбирайте – нужен вам вентзазор или нет. Смотрите, какой у вас утеплитель, какой материал стен.

Смотрите ещё по этой теме на нашем сайте:

  1. Чем отделать дом из КББ?
    Вопрос: Добрый день, уважаемые господа! Расскажите, пожалуйста, как лучше отделать снаружи дом из керамзитобетонных блоков (КББ), какой фасад здесь будет уместен, какие материалы можно применить.

Утепление пенополистиролом стен деревянного дома снаружи
В последнее время люди стали отдавать предпочтение деревянным домам. Первое, чем привлекает данный природный материал – его экологическая чистота. Вдобавок к этому, дерево очень хорошо.

Каркасная стена в разрезе – схема и комментарии
На этой странице представлена каркасная стена в разрезе вместе с утеплителем, который монтируется между стоек каркаса. Проще говоря, каркасная стена в разрезе представляет собой так.

Утепление стен каркасного и деревянного дома опилками
Если посмотреть на историю строительства жилых зданий в холодных регионах, то утепление стен опилками стало практиковаться не так давно. Опилки как утеплитель стен при строительстве.

Конструкция стен каркасного дома – схема пирога
Самая простая конструкция стен каркасного дома – это вертикальные стойки, связанные верхней и нижней обвязкой и перевязанные укосинами для дополнительной жесткости конструкции. При использовании плитного.

Вентилируемый фасад своими руками

Фасадная облицовка дома вносит изменения в эксплуатационные свойства стен. Теплоизоляция дома, его механическая защита, стойкость к влияниям атмосферы – все эти параметры могут существенно корректироваться созданием дополнительного слоя поверх несущей стены. Одним из способов не нарушить оптимальные характеристики постройки является утепление стен с вентилируемым фасадом.

1. Влияние водяных паров на конструкции дома

Степень паропроницаемости различных материалов и конструкций играет существенную роль в долговечности любого строения. Влага, содержащаяся в воздухе, способна оказывать губительное воздействие почти на любой материал, из которого построен дом. Металлоконструкции подвергаются коррозии, дерево гниет, кирпич разрушается, теплоизолирующие материалы теряют свои свойства. Водяные пары вместе с воздухом способны проникать в толщу большинства материалов и конденсироваться там при падении температуры воздуха. В холодное время года сконденсированная влага замерзает, превращаясь в лед, и вносит дополнительные разрушения в конструкции.

Таким образом, нельзя переоценить все инженерные решения, препятствующие влиянию излишней влажности на строительные материалы.

2. Виды внешней отделки домов

Сегодня существует масса способов отделки фасада дома. Самыми распространенными считаются

  • Оштукатуривание стен дома
  • Облицовка деревянными панелями
  • Отделка виниловым или металлическим сайдингом
  • Кирпичная облицовка
  • Покрытия натуральным камнем

Облицовка дома виниловым сайдингом

Подробнее об облицовке фасадов можно прочесть на нашем сайте (здесь). Любой из способов внешней отделки так или иначе вносит изменения в свойства стен. Изменяется общая теплоизоляция дома, стойкость к механическим воздействиям, воздействиям атмосферы и т.д.

В нашем случае, когда мы рассматриваем пароизоляцию всего дома, важно, насколько паропроницаем материал фасада. Почему это так важно – ведь стены, как правило, сами устроены так, чтобы обеспечить оптимальную защиту от повышенной влажности? Дело в том, что устройство стены предусматривает отвод водяных паров из ее толщи. В то же время большинство облицовочных материалов имеют отличную гидроизоляцию и становятся преградой для этого процесса. В результате выделяющаяся из стен дома влага конденсируется между поверхностью стеной и облицовочным материалом. Это оказывает губительное воздействие как на внешнюю поверхность самой стены, так и на внутреннюю поверхность облицовки – особенно в случае применения металлосайдинга или кирпича.

Пароизоляция стен имеет важное значение и при дополнительном утепление стен снаружи.

Такое утепление необходимо в индивидуальных постройках из материалов, имеющих плохую теплоизоляцию – блоковых, кирпичных, щитовых. Дополнительный слой утеплителя между стеной и облицовкой тоже не способствует нормальному отделению водяных паров и требует вентзазора.

Соответственно, фасад здания с наличием вентиляционных зазоров принято называть вентфасадом.

2. Назначение вентзазоров

Создание вентзазора – это одно из инженерных решений, направленных на сохранение нормальной вентиляции поверхности стен. Вентзазор – это воздушная прослойка между элементами здания. В них воздух, содержащий водяные пары, находится в естественном состоянии и может свободно перемещаться. В такую воздушную прослойку выделяется излишняя влага из строительного материала, и в дальнейшем пар из нее уходит в атмосферу.

Проще говоря, между различными элементами, из которых состоят, к примеру, стены дома, оставляется некоторое вентилируемое пространство.

Вентзазор в стене дома Вентзазор при устройстве пола

Вентзазоры конструируют во многих случаях – при закладке фундамента, при утеплении стен, при возведении кровли. В данной статье мы коснемся случая, когда вентиляционные зазоры обеспечивают качественную вентиляцию при внешней отделке стен дома – а именно при утеплении и облицовке фасада.

3. Этапы строительства вентфасада

Рассмотрим общий случай создания вентзазора между стеной дома и внешним утеплителем.

Этапы строительства вентилируемого фасада включают в себя:

  1. Монтаж обрешетки для установки для установки теплоизолятора
  2. Укладка теплоизолятора в ячейки обрешетки
  3. Укрепление теплоизоляционного материала
  4. Монтаж обрешетки для фасадного покрытия
  5. Крепление фасадного материала

4. О выборе утеплителя

Как мы упоминали выше, внешнее утепление и отделка дома не должны ухудшать паропроницаемость стен. Утеплитель должен быть как можно более паропрозрачным.

Самым распространенным утеплителем в индивидуальном строительстве является минеральная вата. Ее низкая плотность позволяет самой минвате выступать в качестве своеобразного вентзазора.

Следует только обращать внимание на качественное крепление минваты – чтобы она не оседала – и дополнительной защите ее от ветра, проникающего даже сквозь мелкие зазоры в облицовке. Этим обусловлено и применение ветрозащитной пленки поверх утеплителя.

Можно применять минвату с повышенной плотностью, тогда ветрозащита не обязательна. Однако стоимость такого материала выше, чем у обычного.

Иногда слой обычной минваты покрывают небольшим (до 3 см толщиной) слоем с повышенной плотностью.

Минвату как правило используют в виде толстых листов, под размеры которых которые подгоняют и обрешетку для ее крепления.

Внешнее утепление стены минватой

5. Монтаж обрешетки для утеплителя

На первом этапе к стенам дома крепятся доски обрешетки для закладки теплоизолирующего материала. Рассмотрим простейший вариант, когда в качестве утеплителя используются листы базальтовой ваты – как самый распространенный случай в строительстве вентфасада.

Сначала на стену крепятся доски обрешетки, между которых закладывается утеплитель. Обрешетка может быть или из деревянных брусков или из металлического профиля. Мы рассмотрим первый случай.

Обычно для обрешетки под утеплитель используют доску толщиной 40-60 мм, а шириной – в соответствии с толщиной утеплителя. Выбор толщины слоя утеплителя диктуется климатическими особенностями региона. Таким образом, ширина доски обычно варьируется от 50 до 100, а иногда и до 150 мм.

Если используется брус сечением до 50 мм, он прикручивается к стене с помощью длинных саморезов. Широкие доски требуют крепления к стене металлическими уголками.

Главным в создании обрешетки является вывод ее в плоскости, так как это обеспечит ровное нанесение материала фасада.

Шаг установки обрешетки обычно подбирается под ширину листов утеплителя,

Обычно доску для каркаса крепят с шагом на 1-2 см меньше ширины утеплителя – с тем, чтобы избежать ненужных зазоров и щелей между листами теплоизоляционного материала.

Щиты из минваты плотно крепятся к стене специальными тарельчатыми дюбелями.

Как упоминалось выше, поверх утеплителя желательно прикрепить пленку ветрозащиты. Она препятствует попаданию в утеплитель влаги извне.

Как правило, используются специальные пленки с возможностью отвода паров от утеплителя – так называемые супердиффузионные мембраны.

Пленка ветрозащиты прикрепляется к торцам брусков обрешетки.

6. Монтаж облицовочного покрытия

На следующем этапе приступают к облицовке стены.

Для создания вентиляционного зазора между утеплителем и облицовочным материалом монтируется второй слой обрешетки. Его называют контробрешеткой. Как правило, для этого используются менее широкий брус, чем для обрешетки под утеплитель.

В простейшем случае на торец досок первого слоя монтируются доски внешней обрешетки. Если нижнюю обрешетку монтируют вертикально, то брусья контробрешетки может располагаться горизонтально.

Поверх второй обрешетке крепят сайдинг.

Схема монтажа вентфасада

7. Двойная обрешетка под утеплитель

Иногда для лучшей теплоизоляции нужно увеличить толщину утеплителя. Чаще всего ее устанавливают вторым слоем поверх первого. Для лучшего ее удержания используют еще один дополнительный слой обрешетки. После установки утеплителя в ячейки первого слоя, перпендикулярно к обрешетке прикрепляются бруски второй обрешетки. Листы утеплителя теперь располагают поперек нижнего слоя. Таким образом минимизируется влияние стыков между отдельными листами теплоизолятора.

Брус контробрешетки для обшивки сайдингом крепятся в данном случае на вторую обрешеку – теперь уже снова вертикально.

Двойная обрешетка под утеплитель

8. Вентфасад своими руками

В любом случае дополнительное утепление стен требует первоначального проектирования, чтобы избежать ненужных трат. Сначала нужно решить, какой слой утеплителя необходим для вашего дома. В большинстве случаев толщины более 100 мм не требуется – значит, можно уложить маты утеплителя толщиной 50 мм в один слой или в два перпендикулярных слоя.

Зная площадь стены, легко рассчитать количество требуемого утеплителя.

Зная ширину утеплителя, рассчитывают количество досок для одной или двух обрешеток. Исходя из сечения выбранных досок подсчитывается требуемая для закупки кубатура досок.

9. Плюсы и минусы вентфасада

К положительным моментам можно отнести

  • Всесезонность работ по установке вентфасада
  • Разнообразие используемых материалов сайдинга
  • Оптимальная паропроницаемость утеплителя
  • Легкость монтажа
  • Дополнительная шумоизоляция стен

Строительство вентфасадов иногда имеет отрицательные стороны:

  • Нарушение оптимальной пароизоляции стен
  • Создание полостей, для пыли, грызунов и т.д
  • Ограничение некоторых видов отделки (штукатурка, мокрый фасад)

10. Заключение

В целом можно сказать, что создание вентилируемого фасада является оптимальным инженерным решением при дополнительном внешнем утеплении стен – оно позволяет сохранить достаточную паропроницаемость стен и позволяет использовать для облицовки большинство из возможных вариантов.

Специалисты фирмы «К-Дом» окажут любые услуги, связанные с созданием вентилируемых фасадов как новых, так и старых зданий. Мы выполним работы по дополнительному утеплению стен, внешней облицовке домов – как в рамках строительства дома под ключ, так и отдельно – при реставрации любого старого дома.

Ссылка на основную публикацию
Adblock
detector